Modeling feral alfalfa (*Medicago sativa subsp. sativa* L.) occurrence using topographical and environmental variables

> Sandya R Kesoju (Presenter), WSU Stephanie L Greene, USDA ARS Ruth Martin, USDA ARS Marc Evans, WSU Rick Boydston, USDA ARS

Roundup®-Ready alfalfa

• Alfalfa was the first major perennial genetically-engineered (GE) crop

•Glyphosate-resistant varieties (+ RRA) were initially deregulated in 2005. In 2006, seeded on 80,000 ha. Seed pulled from market is 2007. In 2011 was deregulated

Concern

➢Alfalfa is a highly out-crossing perennial crop. Pollination is vectored by insects, mainly bees

➢ Feral plants frequently occur along road sides. There is a concern that these plants act as a reservoir and/or bridge to move transgenes into conventional fields

2011 Objective

Survey feral alfalfa to determine baseline levels of (+) RRA transgene presence (presumed from 2005-2007 plantings) to model feral and (+) RRA feral occurrence

Methods

Survey seed production areas in Fresno Co, CA (600 km²), Canyon Co., Idaho (600 km²), and Walla Walla Co., Washington (600 km²)

Sites selected using Spatially Balanced Sample Design (ARC GIS 10)

2011 Survey

Topography, cropping pattern, habitat, ecological, and population factors recorded

sested with RUR test strips

Pendorf

eppendor

Positives confirmed with PCR

Model development

Dependant variables

- Occurrence of any feral plants
- Occurrence of (+) RRA feral plants

Explanatory variables

1. Qualitative variables

•Cropping pattern •crop adjacent •crop behind •crop ahead •Roadside weed management •Habitat •species diversity •vegetation cover •vegetation height

Explanatory variables2. Quantitative variables

 Topography •elevation (m) •slope (%) •aspect (deg) •Climate variables •precipitation (mm) •temperature maximum (deg C) •minimum (deg C) •mean (deg C)

Statistical analysis-qualitative variables

Chi-square test of independence:

➤To assess the relationship between the occurrence of feral plants and qualitative variables

➤To assess the relationship between the occurrence of (+) RRA feral plants and qualitative variables

Statistical analysis-quantitative variables

Binary logistic model:

➤To assess the relationship between the occurrence of feral plants and quantitative variables

➤To assess the relationship between the occurrence of (+) RRA feral plants and quantitative variables

Chi square results

	Canyon		Fresno		
Variable	Feral	RRA feral	Feral	RRA feral	
	alfalfa, corn,			alfalfa,	
Crop adjacent	range	NS	NS	almonds	
			alfalfa,	alfalfa,	
Crop ahead	NS	NS	almonds	almonds	
			alfalfa,		
	alfalfa, corn,		almonds	alfalfa,	
Crop behind	range	NS	cotton	almonds	
Veg cover	patchy	patchy	patchy	NS	
Veg height	NS	NS	short	short	
Veg mang.	sprayed	NS	sprayed	No mang.	
Sps. diversity	low	NS	low	NS	
NS $-significant$ $n < 0.05$					

NS –Significant

h < 0.02

Topography

	Canyon		Fresno	
Variable	Feral	RRA feral	Feral	RRA feral
Elevation	NS	NS	NS	NS
Slope	NS	NS	NS	NS
Aspect	NS	NS	NS	NS

NS =significant p <0.05

Estimate of precipitation

	Car	nyon	Fresno		
Ppt.	Feral	RRA Feral	Feral	RRA Feral	
Jan	-0.10	-0.23	-0.09	0.03	
Feb	-0.13	-0.26	-0.02	0.09	
March	-0.04	0.02	0.05	0.08	
April	-0.10	-0.03	0.08	0.10	
May	-0.02	0.31	0.11	0.25	
June	0.25	0.57	0.11	0.08	
July	-0.23	1.72	-43.5	0.00	
Aug	-0.47	-1.80	-0.47	-2.39	P < 0.05
Sept	0.28 (1.36	-0.13	-0.66	
Oct	-0.15	-0.31	0.03	0.28	\supset
Nov	-0.05	0.15	0.04	0.17	
Dec	-0.02	-0.13	0.03	0.05	

Estimate of maximum temperature

	Ca	anyon	Fresno		
Max. temp	Feral	RRA Feral	Feral	RRA Feral	
Jan	-0.27	0.65	-0.69	-0.05	
Feb	-1.11	-1.51	0.15	1.55	
March	-0.93	-1.82	0.28	0.98)
April	-0.65	-2.03	0.55	0.49	
May	-0.62	-1.94	0.08	-0.78	
June	-0.63	-1.61	0.12	-0.34	
July	-0.35	-1.25	0.20	-0.08	D <0.05
Aug	-0.20	-1.54	0.24	0.15	P <0.03
Sep	-0.13	-2.13	0.52	0.36	
Oct	-0.13	-3.12	0.27	0.52	
Nov	-1.32	-1.95	0.18	0.32	
Dec	0.01	-1.75	0.02	0.56	

Estimate of minimum temperature

	Canyon		Fresno	
Min. temp	Feral	RRA Feral	Feral	RRA Feral
Jan	0.36	2.95	-2.29	0.26
Feb	0.32	3.30	-1.20	-0.41
March	0.22	2.88	-1.38	-0.20
April	0.18	2.13	-1.37	-0.64
May	0.08	1.04	-1.56	-0.93
June	-0.02	2.45	-1.23	-0.94
July	0.16	1.94	-0.67	-0.40
Aug	0.22	1.35	-0.43	-0.79
Sep	0.23	0.90	-0.37	-0.80
Oct	0.41	2.60	-0.44	-0.19
Nov	-0.001	2.63	-0.83	-0.26
Dec	0.29	4.36	-0.009	-0.12

P < 0.05

Summary

• Feral (+) RRA populations were detected 4 years after 2007 injunction, suggesting RRA transgene can persist in the environment

•Fresno and Walla Walla have similar prevalence of feral populations, Canyon had less

• Frequency of (+) RRA transgene was higher in Fresno and lower frequency observed in Canyon and Walla Walla

Summary

•Although seed production locations had (+) RRA feral sites, sites were also located elsewhere, suggesting hay production may be source of feral and (+) RRA feral escapes

•In Fresno, feral and (+) RRA feral plants occurred adjacent to alfalfa and almonds fields

•In Canyon, feral plants occurred adjacent to alfalfa, corn, range while no such relationship observed in (+) RRA feral plants

Summary

In general, feral and (+) RRA feral plants occurred in warmer climates in Fresno, while they occurred in average temperatures in Canyon

Analysis still to be done

- •Evaluate the relationship between feral plants and explanatory variables in Walla Walla County
- •Assess the relationship between historical
- (+) RRA seed locations, (+)RRA hay fields distance and (+) RRA feral plants
- •Incorporate wind speed, roads into the model for all the three counties
- •Spatial models such as ordinary least squares (OLS) and geographically weighted least squares (GWLS) will be used for presence data to predict feral plant occurrence

Acknowledgements

Funded by USDA Office of the Secretary and USDA Agricultural Research Service

- Gwen Pentecost
- Samantha Goodman
- Jose Acala
- Enrique Acala
- Manuel Acala
- Jesse Prieto
- Ines Ferjado
- Miguel Cervantes
- Rafael Atilano
- Estela Cervantes
- Jesse Prieto
- Luz Barrantes